Physical-Rules-Based Adaptive Neuro-Fuzzy Inferential Sensor Model for Predicting the Indoor Temperature in Heating Systems

نویسندگان

  • Liang Huang
  • Zaiyi Liao
  • Lian Zhao
چکیده

Previous research demonstrated that inferential sensors-based control technology can significantly improve the energy efficiency of space heating systems. However, the performance strongly relies on the accuracy and robustness of the dynamic model upon which the inferential model is built. Traditional methods, such as simplified physical model, adaptive neurofuzzy inferential sensor(ANFIS-) based model, were developed and tested in this research. In attempt to improve both the accuracy and robustness of inferential model, this study aims to investigate how to improve the performance of inferential sensors using physical-rulesbased ANFIS in prediction of the hydraulic system temperature in order to adapt the good power needed in the dwellings. This paper presents the structure of this innovative method. The performance is tested using experimental data and is compared with that of previous methods using three performance measures: RMSE, RMS, and R2. The results show that the physical-rule-based ANFIS inferential model is more accurate and robust. The impact of this improvement on the overall control performance is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has th...

متن کامل

A New Structure for Direct Measurement of Temperature Based on Negative Temperature Coefficient Thermistor and Adaptive Neuro-fuzzy Inference System

Thermistors are very commonly used for narrow temperature-range high-resolution applications, such as in medicine, calorimetry, and near ambient temperature measurements. In particular, Negative Temperature Coefficient (NTC) thermistor is very inexpensive and highly sensitive, whose sensing temperature range and sensitivity are highly limited due to the intrinsic nonlinearity and self-heating p...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

A Neuro-Fuzzy Based Adaptive Set-Point Heat Exchanger Control Scheme in District Heating System

The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a no...

متن کامل

A recurrent neuro-fuzzy system and its application in inferential sensing

Conventional neuro-fuzzy systems cannot effectively cope with dynamic processes, such as the heating systems of the buildings, due to the feed forward network structure. To overcome this problem, the existing hybrid system is incorporated with a feedback loop so that it can model the dynamical behavior of the process. As a case study, this improved hybrid system is employed to build an inferent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDSN

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012